Помощь студентуФайлыОбразованиеМетодичка И. В. Семушин ЧИСЛЕННЫЕ МЕТОДЫ АЛГЕБРЫ
25 Ноября 2017, Суббота
10:47
>>> Качественная веб-разработка <<<
10:47
Меню сайта
>Г Л А В Н А Я

>Ф А Й Л Ы

>С Т А Т Ь И

>Р Е Ф Е Р А Т Ы

>Ф О Р У М

>О Т З Ы В Ы

>Т Е С Т Ы

>F l a s h И Г Р Ы

>Ф О Т О Ш О П


Советуем...
Последовательности с++
Вводится последовательность из N положительных целых чисел. Найти наименьшее число среди четных элементов последовательности.

подборка демотиваторов по теме "вконтакте"
подборка демотиваторов по теме "вконтакте".

NVU 1.0 PR ruRU win32 installer full

NVU это Open Source проект Linspire по созданию визуального (WYSIWYG) HTML редактора. Как и для Firefox и Thunderbird основой для создания NVU послужила часть кода выделенного из Mozilla - код Mozilla Composer. К созданию NVU был привлечен главный архитектор Mozilla Composer - Дэниел Глазман. На сегодняшний день NVU имеет уже достаточно много возможностей отсутствующих в оригинальном Mozilla Composer. Это Менеджер сайтов, позволяющий редактировать страницы на удаленном сервере, встроенный Редактор CSS c предварительным просмотром стилей, цветная подсветка синтаксиса в режиме редактирования кода, проверка орфографии и многое другое. Разработчики обещают поднять его функциональность до уровня FrontPage и Dreamweaver.


Карта для контры (Counter Strike 1.6)
Карту делал сам. Ваши комментарии помогут исправить ошибки на карте. Ну карта что-то типа меншен.


Опрос
Вы учитесь в ...
Всего ответов: 657

Сотрудничество
Поставьте себе на сайт и сообщите мне


код кнопки:


Связь с админом
395799449
Написать админу
Оставить отзыв


Файлы
Главная » Файлы » Учебные материалы » Образование

Методичка И. В. Семушин ЧИСЛЕННЫЕ МЕТОДЫ АЛГЕБРЫ

Название: Методичка И. В. Семушин ЧИСЛЕННЫЕ МЕТОДЫ АЛГЕБРЫ
Категория: Образование
Формат файла: pdf
Размер: 966.2Kb
Просмотров: 4513
Загрузок: 7190

Дата добавления: 11 Июня 2010, 18:13
Поделиться:
Скачать:

Скачать Методичка И. В. Семушин ЧИСЛЕННЫЕ МЕТОДЫ АЛГЕБРЫ бесплатно и без регистрации


Внимание! Если ссылка не работает, файл не найден или просто возникают какие-либо вопросы, напишите об этом, пожалуйста, мне на почту: xdypx@yandex.ru. В письме достаточно указать ссылку на эту страницу и описание проблемы или свой вопрос.


Описание:
Методичка И. В. Семушин ЧИСЛЕННЫЕ МЕТОДЫ АЛГЕБРЫ

Описание:
Курс Численные методы( в университетах преследует следующие цели: Предисловие Значение Численных методов алгебры@ во многих областях науки и техники трудно переоценить, 2 оно растет очень быстро. В связи с этим важно, чтобы студенты, готовящиеся стать специалистами в области мате- матемаического моделирования, численных методов и комплексов программ, обладали истинно глубокими знаниями, т. е. знаниями, имеющими для них практическую ценность в их будущей деятельности. Такое знание дости- гается не схоластическим изучением теории и не решением элементарных задач в классе, но реальной проектной работой по созданию серьезных программных продуктов высокого профессионального уровня, воплощающих эти численные методы. В связи с этим данное пособие использует так называемый проектно-ориентированный подход, при котором студенты получают необходимый теоретический материал и закрепляют эти знания в практических лабораторных проектах. После этого итоговая проверка знаний по курсу Численные методы – I> проводится в форме решения задач на экзамене или же методом тестирования. Последнее предполагает умение быстро отыскивать правильный ответ, решать простые задачи и анализировать алгоритмы. Надеемся, что при таком подходе к преподаванию и изучению студент лучше поймет и оценит этот важный предмет.

Оглавление:
Предисловие 7
 1 Введение                                                             9
1.1 Учебные цели студента . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Оценка работы студента . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Кодекс студента . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Краткое описание курса . . . . . . . . . . . . . . . . . . . . . . 17
2 Стандартные алгоритмы LU-разложения 19
2.1 Алгоритмы метода Гаусса . . . . . . . . . . . . . . . . . . . . . 19
2.2 Выбор ведущего элемента . . . . . . . . . . . . . . . . . . . . . 21
2.3 Компактные схемы . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Алгоритмы метода Жордана . . . . . . . . . . . . . . . . . . . 26
2.5 Вычисление обратной матрицы . . . . . . . . . . . . . . . . . . 28
2.6 Плохо обусловленные матрицы . . . . . . . . . . . . . . . . . . 34
2.7 Задание на лабораторный проект № 1 . . . . . . . . . . . . . . 35
2.8 Варианты задания . . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Современные алгоритмы LU-разложения 40
3.1 Гауссово исключение и ijk-алгоритмы . . . . . . . . . . . . . . 40
3.2 Распараллеливание вычислений . . . . . . . . . . . . . . . . . 42
3.3 Параллельное умножение матрицы на вектор . . . . . . . . . . 45
3.4 Параллельное LU-разложение . . . . . . . . . . . . . . . . . . 46
3.5 LU-разложение и его ijk-формы . . . . . . . . . . . . . . . . . 49
3.6 Треугольные системы . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Задание на лабораторный проект № 2 . . . . . . . . . . . . . . 57
3.8 Варианты задания . . . . . . . . . . . . . . . . . . . . . . . . . 59
4 Алгоритмы окаймления в LU-разложении 61
4.1 Метод окаймления . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Окаймление известной части разложения . . . . . . . . . . . . 61
4.3 Окаймление неизвестной части разложения . . . . . . . . . . . 64
4.4 Задание на лабораторный проект № 3 . . . . . . . . . . . . . . 66
4.5 Варианты задания . . . . . . . . . . . . . . . . . . . . . . . . . 69
5 Разреженные формы LU-разложения 70
5.1 Упакованные формы хранения матриц . . . . . . . . . . . . . 70
5.2 Выбор ведущего элемента . . . . . . . . . . . . . . . . . . . . . 72
5.3 Задание на лабораторный проект № 4 . . . . . . . . . . . . . . 75
5.4 Варианты задания . . . . . . . . . . . . . . . . . . . . . . . . . 76
6 Разложения Холесского                 78
6.1 Положительно определенные матрицы . . . . . . . . . . . . . . 78
6.2 Квадратные корни из P и алгоритмы Холесского . . . . . . . 79
6.3 Программная реализация алгоритмов Холесского . . . . . . . 82
6.4 Разложение Холесского: ijk-формы . . . . . . . . . . . . . . . 84
6.5 Разложение Холесского: алгоритмы окаймления . . . . . . . . 86
6.6 Задание на лабораторный проект № 5 . . . . . . . . . . . . . . 89
6.7 Варианты задания . . . . . . . . . . . . . . . . . . . . . . . . . 92
7 Ортогональные преобразования             94
7.1 Ортогональные матрицы и приложения . . . . . . . . . . . . . 94
7.2 Линейная задача наименьших квадратов . . . . . . . . . . . . 96
7.3 Ортогональные матрицы в задаче о наименьших квадратах . . 97
7.4 Преобразование Хаусхолдера . . . . . . . . . . . . . . . . . . . 98
7.5 Шаг триангуляризации матрицы преобразованием Хаусхолдера 103
7.6 Решение треугольной системы Rx = z и обращение матриц R и A .. . . . 104
7.7 Преобразование Гивенса . . . . . . . . . . . . . . . . . . . . . . 107
7.8 Варианты заполнения матрицы R . . . . . . . . . . . . . . . . 113
7.9 Правосторонние ортогональные преобразования и их применение . . . . .. 114
7.10 Двусторонние ортогональные преобразования и их применение 115
7.11 Ортогонализация Грама-Шмидта . . . . . . . . . . . . . . . . . 118
7.12 Алгоритмы ортогонализации Грама-Шмидта . . . . . . . . . . 120
7.13 Решение систем после ортогонализации Грама-Шмидта . . . . . . .. . 123
 7.14 Обращение матриц после ортогонализации Грама-Шмидта. . . . . . . . . 123
7.15 Задание на лабораторный проект № 6 . . . . . . . . . . . . . . 124
7.16 Варианты задания . . . . . . . . . . . . . . . . . . . . . . . . . 125
8 Фонд задач                         127
8.1 Типовые задачи . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2 Решения и рекомендации к типовым задачам . . . . . . . . . . 131
8.3 Варианты контрольных заданий . . . . . . . . . . . . . . . . . 134
8.4 Задачи для контрольных заданий и экзамена . . . . . . . . . . 141
9 Программа курса 164
9.1 Общая информация . . . . . . . . . . . . . . . . . . . . . . . . 164
9.2 Рабочая программа . . . . . . . . . . . . . . . . . . . . . . . . . 165
Заключение                         175
Библиографический список             178

Комментарии:
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Разделы новостей
Образование [4]
лабы на Паскале [11]
Шпоры [10]
Учебники [19]
Лабы по физике [3]
Лабы по С++ [7]

Статистика

Яндекс.Метрика


Онлайн всего: 1
Гостей: 1
Пользователей: 0

Все пользователи

Яндекс цитирования Rambler's Top100 Каталог сайтов OpenLinks.RU Каталог сайтов iLinks.RU Каталог сайтов :: Развлекательный портал iTotal.RU Каталог сайтов Bi0 Каталог сайтов Всего.RU